Auxin Transport in Suspension-Cultured Soybean Root Cells
Author(s) -
Matthew T. Loper,
Roger M. Spanswick
Publication year - 1991
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.96.1.192
Subject(s) - depolarization , symporter , membrane potential , chemistry , auxin , membrane transport , biophysics , cotransporter , glycine , reversal potential , ion transporter , membrane , sorbitol , biochemistry , osmosis , ionophore , proton transport , sodium , transporter , biology , patch clamp , amino acid , receptor , organic chemistry , gene
To test the hypothesis that the carrier-mediated component of the indoleacetic acid (IAA) influx involves an electrogenic proton/IAA anion symport, the effects on the IAA influx of salts expected to depolarize the membrane potential were examined in suspension-cultured soybean (Glycine max [L.] Merr.) root cells. Although KCl does inhibit carrier-mediated uptake, the effect is specific to the anion at low concentrations and not due to more general processes such as changes in ionic or osmotic strength. Other anions such as bromide, iodide, and fluoride inhibit the carrier more strongly. Because potassium iminodiacetate, which is also expected to depolarize the membrane potential, has no inhibitory effect on the IAA influx, there is no evidence for the involvement of the membrane potential in carrier-mediated uptake. It is therefore most likely that in soybean cells, if carrier-mediated uptake occurs via a proton symport, the H(+):IAA- stoichiometry is 1:1. At concentrations greater than 70 millimolar, sorbitol, a nonionic osmoticum, inhibits carrier-mediated IAA uptake. The effects of specific anions and osmotic potential on the uptake carrier necessitates the reevaluation of other auxin transport studies in which KCl was routinely used as an agent with which to depolarize the membrane potential.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom