Effect of Abscisic Acid on the Linoleic Acid Metabolism in Developing Maize Embryos
Author(s) -
Joaquín Abián,
Emilio Gelpı́,
Montserrat Pagès
Publication year - 1991
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.95.4.1277
Subject(s) - abscisic acid , linoleic acid , embryo , metabolism , lipoxygenase , biochemistry , zea mays , biology , chemistry , enzyme , fatty acid , gene , microbiology and biotechnology , agronomy
Partially purified protein extracts from maize (Zea mays L.) embryos, whether treated or not with abscisic acid (ABA), were incubated with linoleic acid (LA) and 1-[(14)C]LA. The resulting LA metabolites were monitored by high performance liquid chromatography with a radioactivity detector and identified by gas chromatography-mass spectrometry. alpha- and gamma-ketol metabolites arising from 9-lipoxygenase activity were the more abundant compounds detected in the incubates, although the corresponding metabolites produced by 13-lipoxygenase were also present in the samples. In addition, a group of stereoisomers originating from two isomeric trihydroxy acids (9, 12, 13-trihydroxy-10-octadecenoic and 9, 10, 13-trihydroxy-11-octadecenoic acids) are described. Important variations in the relative proportions of the LA metabolites were observed depending on the embryo developmental stage and on ABA treatment. Two new ABA-induced compounds have been detected. These compounds are present in embryos at all developmental stages, being more abundant in old (60 days) embryos. Furthermore, ABA induction of these compounds is maximum at very young developmental stages, decreasing as maturation progresses. A tentative structure for these compounds (10-oxo-9, 13-dihydroxy-11-octadecenoic acid and 12-oxo-9, 13-dihydroxy-10-octadecenoic acid) is also provided. This study revealed an early stage in maize embryogenesis characterized by a higher relative sensitivity to ABA. The physiological importance of ABA on LA metabolism is discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom