Short-Term Leaf Elongation Kinetics of Maize in Response to Salinity Are Independent of the Root
Author(s) -
Grant R. Cramer,
Daniel Bowman
Publication year - 1991
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.95.3.965
Subject(s) - elongation , salinity , shoot , biology , botany , zea mays , steady state (chemistry) , horticulture , saline , agronomy , chemistry , ecology , materials science , ultimate tensile strength , metallurgy , endocrinology
The essentiality of roots to the short-term responses of leaf elongation to salinity was tested by removing the roots of maize (Zea mays L.) from the shoots and comparing the initial short-term response of leaf elongation to that with intact plants. Eightday-old seedlings growing in solution culture were treated with 80 millimolar NaCl and their leaf elongation rate (LER) was monitored with a linear variable differential transformer connected to a computerized data aquisition system. Initially, LER of intact plants was sharply reduced by salinity, then rose rapidly to reach a new steady-state rate about 1.5 hours after salinization. The new steady-state rate of salinized intact plants was about 80% of the control rate. When the roots of nonsalinized plants were excised under the surface of the nutrient solution, excision did not disturb the steady-state LER. When these shoots were salinized, they responded in a manner nearly identical to that of intact plants, indicating that roots are not essential for the modulation of short-term LER of salt-stressed plants.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom