z-logo
open-access-imgOpen Access
Ethanol-Induced Injuries to Carrot Cells
Author(s) -
Pierdomenico Perata,
Amedeo Alpi
Publication year - 1991
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.95.3.748
Subject(s) - acetaldehyde , daucus carota , ethanol , alcohol dehydrogenase , chemistry , molar concentration , biochemistry , toxicity , alcohol , somatic cell , cell culture , cell growth , biology , botany , organic chemistry , genetics , gene
Carrot (Daucus carota L.) cell cultures show high sensitivity to ethanol since both unorganized cell growth and somatic embryogenesis are strongly inhibited by ethanol at relatively low concentrations (10-20 millimolar). The role of acetaldehyde on ethanol-induced injuries to suspension cultured carrot cells was evaluated. When ethanol oxidation to acetaldehyde is prevented by adding an alcohol-dehydrogenase (EC 1.1.1.1) inhibitor (4-methylpyrazole) to the culture medium, no ethanol toxicity was observed, even if ethanol was present at relatively high concentrations (40-80 millimolar). Data are also presented on the effects of exogenously added acetaldehyde on both carrot cell growth and somatic embryogenesis. We conclude that the observed toxic effects of ethanol cannot be ascribed to ethanol per se but to acetaldehyde.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom