Monoclonal Antibody Recognition of Abscisic Acid Analogs
Author(s) -
M. K. WalkerSimmons,
Martin J. T. Reaney,
S. A. Quarrie,
Pierdomenico Perata,
Paolo Vernieri,
Suzanne R. Abrams
Publication year - 1991
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.95.1.46
Subject(s) - monoclonal antibody , abscisic acid , stereochemistry , double bond , ring (chemistry) , chemistry , reactivity (psychology) , antibody , receptor , molecule , carboxylic acid , biochemistry , biology , organic chemistry , medicine , alternative medicine , pathology , immunology , gene
Specificities of three monoclonal antibodies (15-I-C5, DBPA 1, and MAC 62) raised against the plant hormone (S)-(+)-abscisic acid (ABA) have been compared. Immunological cross-reactivities against fifteen biologically active analogs of ABA were measured. The ABA analogs were altered at one or more of four positions: the double bonds in the ring, at C-2 C-3 and at C-4 C-5, and in the oxidation level at C-1. Several analogs were optically active with chiral centers at C-1' and C-2'. For cross-reactivity, all three monoclonal antibodies required the carboxylic acid group, and the cis configuration of the double bond at C-2 C-3 of the ABA molecule. Monoclonals 15-I-C5 and DBPA 1 required the entire ABA sidechain from the C-1 to C-1', but these monoclonals did cross-react with analogs with the ring double bond reduced and the C-2' methyl cis to the sidechain. Only MAC 62 recognized analogs containing an acetylene at C-4 C-5. MAC 62 had more strict requirements for the ring double bond, but gave some cross-reactivity with acetylenic analogs having a saturated ring. All three monoclonals had higher specificity for analogs having the same absolute configuration at C-1' as (S)-(+)-ABA. This work provides new information about the spatial regions of the ABA molecule that elicit immunological recognition, and serves as a basis for future investigations of the ABA receptor using ABA analogs and anti-idiotypic antibodies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom