z-logo
open-access-imgOpen Access
Age-Related Changes in Petal Membranes from Attached and Detached Rose Flowers
Author(s) -
Hannan Itzhaki,
Amihud Borochov,
Shimon Mayak
Publication year - 1990
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.94.3.1233
Subject(s) - phospholipid , membrane fluidity , degree of unsaturation , sterol , membrane , petal , biology , biochemistry , senescence , chemistry , botany , cholesterol , chromatography , microbiology and biotechnology
Changes in petal membrane properties during aging were studied in cut and in attached rose flowers (Rosa hybrida L., cv Mercedes). Both cut and attached flowers exhibited a growth phase characterized by an increase in fresh weight and an accumulation of membrane components. The growth phase, which was more pronounced in the attached than in the cut flowers, was followed by a senescence phase, characterized by a decrease in fresh weight and a decline in membrane components. In cut flowers, both the growth and the senescence phases were accompanied by a decrease in membrane fluidity and in the ratio of unsaturated to saturated fatty acids, but the ratio of sterol to phospholipid increased. In attached flowers, while both the membrane fluidity and the sterol-to-phospholipid ratio remained unchanged during the growth phase, the senescence phase was accompanied (as in cut flowers) by a decrease in membrane fluidity and an increase in the sterol-to-phospholipid ratio. Unlike in cut flowers, however, the age-related changes in the ratio of unsaturation of fatty acids were not correlated with those of fluidity. Changes in the saturation of phospholipid acyl chains are commonly thought to influence membrane fluidity. Our observations question this view and suggest instead that the ratio of sterol to phospholipid may play the major role in maintaining membrane lipid fluidity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom