z-logo
open-access-imgOpen Access
Occurrence of Two Pathways for Malate Oxidation in Bacteroids Isolated from Sesbania rostrata Stem Nodules during C2H2 Reduction
Author(s) -
JeanCharles Trinchant,
Jean Rigaud
Publication year - 1990
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.94.3.1002
Subject(s) - sesbania , biology , reduction (mathematics) , biochemistry , chemistry , botany , mathematics , geometry
Malate oxidation supported C(2)H(2) reduction by bacteroids isolated from Sesbania rostrata stem nodules. Optimal activity reached 7.5 nanomoles per minute per milligram of dry weight and was in the same order of magnitude as that observed with succinate but always required a lower O(2) tension. Malate dehydrogenase (EC 1.1.1.37), purified 66-fold from bacteroids, actively oxidized malate (K(m) = 0.19 millimolar). Malic enzyme (EC 1.1.1.39) from Sesbania bacteroids had a lower affinity for malate (K(m) = 2.32 millimolar). Both enzymes exclusively required NAD(+) as cofactor and required an alkaline pH for optimal activity. 2-Oxoglutarate and oxalate, inhibiting malate dehydrogenase and malic enzyme, respectively, were used to specifically block each malate oxidation pathway in bacteroids. The predominance of malate dehydrogenase activity to support bacteroid N(2) fixation was demonstrated. The inhibition of O(2) consumption by 2-oxoglutarate confirmed the importance of the malate dehydrogenase pathway in malate oxidation. It is proposed that the utilization of malate, with regard to O(2), is important in a general strategy of this legume to maintain N(2) fixation under O(2) limited conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom