Enzymology of the Reduction of Hydroxypyruvate and Glyoxylate in a Mutant of Barley Lacking Peroxisomal Hydroxypyruvate Reductase
Author(s) -
Leszek A. Kleczkowski,
Gerald E. Edwards,
Ray D. Blackwell,
Peter J. Lea,
Curtis V. Givan
Publication year - 1990
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.94.2.819
Subject(s) - glyoxylate cycle , chemistry , biochemistry , hordeum vulgare , mutant , enzyme , reductase , biology , botany , poaceae , gene
The use of LaPr 88/29 mutant of barley (Hordeum vulgare), which lacks NADH-preferring hydroxypyruvate reductase (HPR-1), allowed for an unequivocal demonstration of at least two related NADPH-preferring reductases in this species: HPR-2, reactive with both hydroxypyruvate and glyoxylate, and the glyoxylate specific reductase (GR-1). Antibodies against spinach HPR-1 recognized barley HPR-1 and partially reacted with barley HPR-2, but not GR-1, as demonstrated by Western immunoblotting and immunoprecipitation of proteins from crude leaf extracts. The mutant was deficient in HPR-1 protein. In partially purified preparations, the activities of HPR-1, HPR-2, and GR-1 could be differentiated by substrate kinetics and/or inhibition studies. Apparent K(m) values of HPR-2 for hydroxypyruvate and glyoxylate were 0.7 and 1.1 millimolar, respectively, while the K(m) of GR-1 for glyoxylate was 0.07 millimolar. The K(m) values of HPR-1, measured in wild type, for hydroxypyruvate and glyoxylate were 0.12 and 20 millimolar, respectively. Tartronate and P-hydroxypyruvate acted as selective uncompetitive inhibitors of HPR-2 (K(i) values of 0.3 and 0.4 millimolar, respectively), while acetohydroxamate selectively inhibited GR-1 activity. Nonspecific contributions of HPR-1 reactions in assays of HPR-2 and GR-1 activities were quantified by a direct comparison of rates in preparations from wild-type and LaPr 88/29 plants. The data are evaluated with respect to previous reports on plant HPR and GR activities and with respect to optimal assay procedures for individual HPR-1, HPR-2, and GR-1 rates in leaf preparations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom