Pyrophosphate Fructose-6-P 1-Phosphotransferase from Tomato Fruit
Author(s) -
Joshua Wong,
F. Kiss,
Ming-X Wu,
Bob B. Buchanan
Publication year - 1990
Publication title -
plant physiology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.94.2.499
Subject(s) - lycopersicon , fructose , pyrophosphate , phosphotransferase , biochemistry , fructose 1,6 bisphosphatase , sugar , chemistry , starch , protein subunit , enzyme , pi , biology , botany , gene
Three forms of pyrophosphate fructose-6-phosphate 1-phosphotransferase (PFP) were purified from both green and red tomato (Lycopersicon esculentum) fruit: (a) a classical form (designated Q(2)) containing alpha- (66 kilodalton) and beta- (60 kilodalton) subunits; (b) a form (Q(1)) containing a beta-doublet subunit; and (c) a form (Q(0)) that appeared to contain a beta-singlet subunit. Several lines of evidence suggested that the different forms occur under physiological conditions. Q(2) was purified to apparent electrophoretic homogeneity; Q(1) and Q(0) were highly purified, but not to homogeneity. The distribution of the PFP forms from red (versus green) tomato was: Q(2), 29% (90%); Q(1), 47% (6%); and Q(0), 24% (4%). The major difference distinguishing the red from the green tomato enzymes was the fructose-2,6-bisphosphate (Fru-2,6-P(2))-induced change in K(m) for fructose-6-phosphate (Fru-6-P), the ;green forms' showing markedly enhanced affinity on activation (K(m) decrease of 7-9-fold) and the ;red forms' showing either little change (Q(0), Q(1)) or a relatively small (2.5-fold) affinity increase (Q(2)). The results extend our earlier findings with carrot root to another tissue and indicate that forms of PFP showing low or no affinity increase for Fru 6-P on activation by Fru-2,6-P(2) (here Q(1) and Q(0)) are associated with sugar storage, whereas the classical form (Q(2)), which shows a pronounced affinity increase, is more important for starch storage.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom