A Kinetic Characterization of Slow Inactivation of Ribulosebisphosphate Carboxylase during Catalysis
Author(s) -
Daryl L. Edmondson,
Murray R. Badger,
T. John Andrews
Publication year - 1990
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.93.4.1376
Subject(s) - rubisco , ribulose , ribulose 1,5 bisphosphate , chemistry , steady state (chemistry) , pyruvate carboxylase , aldolase a , biochemistry , substrate (aquarium) , kinetics , photosynthesis , stereochemistry , enzyme , biology , organic chemistry , physics , quantum mechanics , ecology
The catalytic activity of ribulosebisphosphate carboxylase (Rubisco) declined as soon as catalysis was initiated by exposure to its substrate, d-ribulose-1,5-bisphosphate (ribulose-P(2)). The decline continued exponentially, with a half-time of approximately 7 minutes until, eventually, a steady state level of activity was reached which could be as low as 15% of the initial activity. The ratio of the steady state activity to the initial activity was lower at low CO(2) concentration and at low pH. The inhibitors 6-phosphogluconate and H(2)O(2) alleviated the inactivation, increasing the final/initial rate ratio and the half-time. Varying ribulose-P(2) concentration in the range above that required to saturate catalysis did not affect the kinetics of inactivation. The affinities for CO(2) and ribulose-P(2) were unaffected by the inactivation. The decline in activity occurred with preparations of ribulose-P(2) which contained no detectable d-xylulose-1,5-bisphosphate and also with ribulose-P(2) which had been generated enzymatically immediately before use. Inclusion of an aldolase system for removing d-xylulose-1,5-bisphosphate also did not alter the inactivation process. The inactivated Rubisco did not recover after complete exhaustion of ribulose-P(2). We conclude that the inactivation is not caused by readily-reversible binding of ribulose-P(2) at a site different from the active site and that it is unlikely to be attributable to inhibitory contaminants in ribulose-P(2) preparations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom