Phosphorylation of Plant H2A Histones
Author(s) -
George R. Green,
Lisa C. Gustavsen,
Dominic Poccia
Publication year - 1990
Publication title -
plant physiology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.93.3.1241
Subject(s) - histone , phosphorylation , serine , biology , medicago sativa , biochemistry , histone modifying enzymes , histone h2a , threonine , gel electrophoresis , dna , botany
Phosphorylation of wheat (Triticum aestivum) and alfalfa (Medicago sativa) H2A histone variants was examined during early seedling growth. The C-terminal regions of wheat H2A variants contain multiple S-P tetrapeptides (serine-proline adjacent to a pair of basic amino acids) which resemble known phosphorylation sites in histones from other species. Phosphorylation of nucleosomal core histones was assessed by autoradiography of proteins labeled in vivo with (32)Pi and resolved by two-dimensional polyacrylamide gel electrophoresis, and phosphorylation sites were mapped by cleaving in vivo labeled H2A variants with N-bromosuccinimide. Essentially all phosphorylation of nucleosomal core histones in wheat and alfalfa seedlings occurred within the C-terminal peptides obtained from wheat and alfalfa H2A variants. A hypothesis accounting for the presence of large H2A and H2B histone variants in plants and phosphorylation of plant H2A C-terminal regions is proposed. The utility of S-P tetrapeptides for modulation of DNA-protein interactions is discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom