Cyanogenic Lipids
Author(s) -
Dirk Selmar,
Sabine Grocholewski,
David S. Seigler
Publication year - 1990
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.93.2.631
Subject(s) - chemistry , glycoside , de novo synthesis , biosynthesis , botany , biochemistry , biology , organic chemistry , enzyme
Large amounts of cyanogenic lipids (esters of 1 cyano-2-methylprop-2-ene-1-ol with C:20 fatty acids) are stored in the seeds of Ungnadia speciosa. During seedling development, these lipids are completely consumed without liberation of free HCN to the atmosphere. At the same time, cyanogenic glycosides are synthesized, but the total amount is much lower (about 26%) than the quantity of cyanogenic lipids formerly present in the seeds. This large decrease in the total content of cyanogens (HCN-potential) demonstrates that at least 74% of cyanogenic lipids are converted to noncyanogenic compounds. Whether the newly synthesized cyanogenic glycosides are derived directly from cyanogenic lipids or produced by de novo synthesis is still unknown. Based on the utilization of cyanogenic lipids for the synthesis of noncyanogenic compounds, it is concluded that these cyanogens serve as storage for reduced nitrogen. The ecophysiological significance of cyanolipids based on multifunctional aspects is discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom