z-logo
open-access-imgOpen Access
Induction of Pyrophosphate:Fructose 6-Phosphate 1-Phosphotransferase by Anoxia in Rice Seedlings
Author(s) -
Emmanuel Mertens,
Yvan Larondelle,
H G Hers
Publication year - 1990
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.93.2.584
Subject(s) - phosphofructokinase , pyrophosphate , phosphotransferase , fructose 2,6 bisphosphate , fructose , biochemistry , glycolysis , oryza sativa , chemistry , phosphate , fructose 1,6 bisphosphatase , enzyme , biology , gene
Rice (Oryza sativa) seeds were imbibed for 3 days and the seedlings were further incubated for 8 days in the presence of either air or nitrogen. In aerobiosis, the specific activity of pyrophosphate:fructose 6-phosphate 1-phosphotransferase and that of the ATP-dependent phosphofructokinase increased about fourfold. In anaerobiosis, the specific activity of ATP-dependent phosphofructokinase remained stable, whereas that of pyrophosphate:fructose 6-phosphate 1-phosphotransferase increased as much as in the presence of oxygen and there was also a fourfold increase in the concentration of fructose 2,6-bisphosphate, a potent stimulator of that enzyme. These data suggest a preferential involvement of pyrophosphate:fructose 6-phosphate 1-phosphotransferase rather than of ATP-dependent phosphofructokinase in glycolysis during anaerobiosis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom