Further Characterization of the Red Beet Plasma Membrane Ca2+-ATPase Using GTP as an Alternative Substrate
Author(s) -
Lorraine E. Williams,
Sherry B. Schueler,
Donald P. Briskin
Publication year - 1990
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.92.3.747
Subject(s) - gtp' , atpase , membrane , vesicle , biochemistry , calmodulin , chemistry , biophysics , egta , calcium , biology , enzyme , organic chemistry
The GTP-driven component of Ca(2+) uptake in red beet (Beta vulgaris L.) plasma membrane vesicles was further characterized to confirm its association with the plasma membrane Ca(2+)-translocating ATPase and assess its utility as a probe for this transport system. Uptake of (45)Ca(2+) in the presence of GTP demonstrated similar properties to those previously observed for red beet plasma membrane vesicles utilizing ATP with respect to pH optimum, sensitivity to orthovanadate, dependence on Mg:substrate concentration and dependence on Ca(2+) concentration. Calcium uptake in the presence of GTP was also strongly inhibited by erythrosin B, a potent inhibitor of the plant plasma membrane Ca(2+)-ATPase. Furthermore, after treatment with EGTA to remove endogenous calmodulin, the stimulation of (45)Ca(2+)-uptake by exogenous calmodulin was nearly equivalent in the presence of either ATP or GTP. Taken together these results support the proposal that GTP-driven (45)Ca(2+) uptake represents the capacity of the plasma membrane Ca(2+)-translocating ATPase to utilize this nucleoside triphosphate as an alternative substrate. When plasma membrane vesicles were phosphorylated with [gamma-(32)P]-GTP, a rapidly turning over, 100 kilodalton phosphorylated peptide was observed which contained an acyl-phosphate linkage. While it is proposed that this peptide could represent the catalytic subunit of the plasma membrane Ca(2+)-ATPase, it is noted that this molecular weight is considerably lower than the 140 kilodalton size generally observed for plasma membrane Ca(2+)-ATPases present in animal cells.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom