z-logo
open-access-imgOpen Access
Photosynthetic Decline from High Temperature Stress during Maturation of Wheat
Author(s) -
Scott A. Harding,
James A. Guikema,
Gary M. Paulsen
Publication year - 1990
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.92.3.654
Subject(s) - photosynthesis , biology , stress (linguistics) , heat stress , botany , zoology , linguistics , philosophy
High temperature stress reduces grain growth in wheat (Triticum aestivum L.) by altering source activity and sink capacity. The impact of stress on source and sink interactions in two wheat cultivars of differing source thermotolerance was monitored by analysis of chlorophyll fluorescence transients, Fv (variable fluorescence) and PSM (peak, stationary, maximum), of attached flag leaves on intact and decapitated tillers grown at optimum (20 degrees C) and stress (35 degrees C) temperatures after anthesis. The thermotolerant cultivar Waverly had reduced Fv and PS quenching and a large increase of SM during heat stress. The less thermotolerant cultivar, Len, exhibited increased Fv and PS quenching and a small increase of SM. Fluorescence induction was similar in intact and decapitated tillers of Len, indicating diminished sinksource interaction during heat stress. The present results and previous observations of photosynthetic activities indicate that cyclic electron transport and photophosphorylation in flag leaves of the thermotolerant cultivar were stimulated by sink demand (increased SM in intact plants). Reduced grain development in the thermolabile cultivar resulted from limited capacity to support cyclic electron transport and photophosphorylation (slight increase in SM of intact plants and large reduction of Cytochrome f/b(6)-mediated electron transport capacity). It was concluded that heat stress injures the photosynthetic apparatus during reproductive growth of wheat and that diminished source activity and sink capacity may be equally important in reducing productivity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom