Violaxanthin Is an Abscisic Acid Precursor in Water-Stressed Dark-Grown Bean Leaves
Author(s) -
Yi Li,
Daniel C. Walton
Publication year - 1990
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.92.3.551
Subject(s) - violaxanthin , neoxanthin , xanthophyll , abscisic acid , fluridone , chemistry , botany , phaseolus , abscission , biology , photosynthesis , carotenoid , zeaxanthin , lutein , biochemistry , gene
The leaves of dark-grown bean (Phaseolus vulgaris L.) seedlings accumulate considerably lower quantities of xanthophylls and carotenes than do leaves of light-grown seedlings, but they synthesize at least comparable amounts of abscisic acid (ABA) and its metabolites when water stressed. We observed a 1:1 relationship on a molar basis between the reduction in levels of violaxanthin, 9'-cis-neoxanthin, and 9-cis-violaxanthin and the accumulation of ABA, phaseic acid, and dihydrophaseic acid, when leaves from dark-grown plants were stressed for 7 hours. Early in the stress period, reductions in xanthophylls were greater than the accumulation of ABA and its metabolites, suggesting the accumulation of an intermediate which was subsequently converted to ABA. Leaves which were detached, but not stressed, did not accumulate ABA nor were their xanthophyll levels reduced. Leaves from plants that had been sprayed with cycloheximide did not accumulate ABA when stressed, nor were their xanthophyll levels reduced significantly. Incubation of dark-grown stressed leaves in an (18)O(2)-containing atmosphere resulted in the synthesis of ABA with levels of (18)O in the carboxyl group that were virtually identical to those observed in light-grown leaves. The results of these experiments indicate that violaxanthin is an ABA precursor in stressed dark-grown leaves, and they are used to suggest several possible pathways from violaxanthin to ABA.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom