z-logo
open-access-imgOpen Access
Gibberellic Acid Effects on Greening in Pea Seedlings
Author(s) -
James N. Mathis,
James A. Bradburne,
Melissa A. Dupree
Publication year - 1989
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.91.1.19
Subject(s) - greening , pisum , gibberellic acid , etiolation , chlorophyll , sativum , chlorophyll a , botany , biology , chloroplast , horticulture , photosynthesis , chemistry , biochemistry , enzyme , germination , ecology , gene
The effect of gibberellic acid (GA) on light-induced greening of etiolated pea plants (Pisum sativum [L.] cultivars Alaska and Progress) was characterized. Progress, a GA-deficient dwarf of Alaska, was found to accumulate chlorophyll and light harvesting chlorophyll protein associated with photosystem II (LHC-II) more rapidly than Alaska, Alaska treated with GA, or Progress treated with GA. A slightly lower chlorophyll content was noted after 24 hours of light induced greening for Alaska treated with GA relative to untreated Alaska. GA-treated Progress, Alaska, and GA-treated Alaska all gave essentially identical patterns for LHC-II accumulation. Similar patterns of LHC-II mRNA induction were found in all four treatments indicating that differences in mRNA induction did not cause differences in LHC-II accumulation. Chlorophyll and LHC-II accumulation in each treatment followed the same patterns of accumulation and a significant correlation (at the 0.01 level of significance) was found between chlorophyll and LHC-II content. Since Progress treated with GA accumulated LHC-II and chlorophyll in a manner similar to that of Alaska, it is clear that GA alters the process of greening either directly or indirectly.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom