Phosphate Starvation Inducible Metabolism in Lycopersicon esculentum
Author(s) -
Alan H. Goldstein,
Stephen P. Mayfield,
Avihai Da,
Brian K. Tibbot
Publication year - 1989
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.91.1.175
Subject(s) - secretion , golgi apparatus , biochemistry , starvation , biology , lycopersicon , metabolism , secretory protein , gel electrophoresis , phosphate , microbiology and biotechnology , cell , botany , endocrinology
Phosphate starvation increased the secretion of at least six proteins by suspension cultured tomato (Lycopersicon esculentum L. and L. pennellii) cells. Cells exhibited a biphasic response to phosphate (Pi) starvation. The early phase involved enhanced secretion of three proteins in response to transfer to a Pi-depleted media, while biomass accumulation continued at the same rate as in the Pi-sufficient cells. Severe starvation, defined as inhibition of biomass accumulation, induced enhanced secretion of three additional proteins. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis, media proteins were immunoblotted with antibodies reacting specifically to oligosaccharides processed by the Golgi apparatus. Binding patterns showed that the enhancement in secretion during both phases of starvation was Golgi-mediated. Cells undergoing severe starvation had a respiration rate approximately twice that of unstressed cells and secreted 4.4 times more protein into the media per unit biomass. These data suggest overlapping Pi starvation-specific and global stress responses in plant cells. Under these conditions, Golgi-mediated protein secretion is enhanced. We present evidence for phosphate starvation inducible enhancement of Pi uptake. Secreted proteins specific for N and Fe starvation are also identified.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom