Aspartate Aminotransferase in Alfalfa Root Nodules
Author(s) -
Stephen M. Griffith,
Carroll P. Vance
Publication year - 1989
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.90.4.1622
Subject(s) - biology , root nodule , isozyme , gene isoform , nodule (geology) , polyclonal antibodies , specific activity , enzyme , protein subunit , medicago sativa , microbiology and biotechnology , biochemistry , antibody , gene , botany , nitrogen fixation , immunology , paleontology , bacteria , genetics
Aspartate aminotransferase (l-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1 [AAT]), a key enzyme in the assimilation of C and N compounds, was purified from the cytosol of alfalfa (Medicago sativa L.) root nodules. Isoforms that increased during nodule development, AAT-2a, AAT-2b, and AAT-2c, were purified greater than 447-fold to apparent homogeneity, and high titer polyclonal antibodies were produced. The native molecular weight of the AAT-2 isoforms was approximately 80 kilodatons with a subunit molecular weight of 40 kilodatons, indicating that the holoenzymes are dimers. The AAT-2 isoforms comprised approximately 0.4% of the total soluble nodule protein. The AAT specific activity was measured in leaf, stem, root, and nodule organs, and zymograms of each were compared. Enzyme activity was 4- to 37-fold greater in effective (nitrogen fixing) nodules than in leaves, stems, and roots. Effective nodule AAT-specific activity was 3- to 8-fold greater than that of plant-controlled ineffective nodules. No differences in K(m) were observed between AAT-1 and AAT-2. Antibodies raised against AAT-2 were more selective against AAT-2 than AAT-1. Evidence obtained from zymograms suggests that the expression of alfalfa nodule AAT is controlled at two different gene loci, AAT-1 and AAT-2, resulting in different dimeric isoforms.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom