Transcriptional Analysis of Polygalacturonase and Other Ripening Associated Genes in Rutgers, rin, nor, and Nr Tomato Fruit
Author(s) -
Maria Pietronilla Penna,
James E. Lincoln,
Robert L. Fischer,
A. B. Bennett
Publication year - 1989
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.90.4.1372
Subject(s) - ripening , pectinase , lycopersicon , transcription (linguistics) , mutant , biology , gene , gene expression , wild type , biochemistry , botany , enzyme , linguistics , philosophy
We have studied the transcription of polygalacturonase (PG) and several other riponing-associated genes in wild-type tomato (Lycopersicon esculentum) fruit and three ripening-impaired mutants, rin, nor, and Nr. In wild-type fruit, the PG gene becomes transcriptionally active early in ripening and remains transcriptionally active during the ripening process. Fruit of the three ripening-impaired mutants, which have reduced levels of PG mRNA, have correspondingly reduced PG transcription rates. Other ripening-associated genes showed diverse patterns of expression in the ripening-impaired mutant backgrounds. These results indicate that transcriptional activation of the PG gene is an important control point regulating the expression of PG during ripening in wild-type fruit and that PG expression in rin, nor, and Nr fruit is blocked at the level of transcription. A comparison of PG transcription rates and mRNA levels with those of other ripening-associated genes suggests that posttranscriptional processes may also contribute to the large accumulation of PG mRNA during ripening.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom