Zeaxanthin Synthesis, Energy Dissipation, and Photoprotection of Photosystem II at Chilling Temperatures
Author(s) -
Barbara DemmigAdams,
Klaus Winter,
Almuth Krüger,
Franz–Christian Czygan
Publication year - 1989
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.90.3.894
Subject(s) - zeaxanthin , photoprotection , violaxanthin , photosystem ii , quenching (fluorescence) , chlorophyll fluorescence , xanthophyll , antheraxanthin , chemistry , non photochemical quenching , photochemistry , fluorescence , photosynthesis , lutein , carotenoid , botany , biology , biochemistry , physics , quantum mechanics
When leaves of a mangrove, Rhizophora mangle, were exposed to an excess of light at chilling temperatures, synthesis of zeaxanthin through violaxanthin de-epoxidation as well as nonphotochemical fluorescence quenching were markedly reduced. The results suggest a protective role of energy dissipation against the adverse effects of high light and chilling temperatures: leaves of R. mangle that had been preilluminated in 2% O(2), 0% CO(2) at low photon flux density and showed a high level of zeaxanthin, and leaves that had been kept in the dark and contained no zeaxanthin, were both exposed to high light and chilling temperatures (5 degrees C leaf temperature) in air and then held under control conditions in low light in air at 25 degrees C. Measurements of chlorophyll a fluorescence at room temperature showed that the photochemical efficiency of PSII and the yield of maximum fluorescence of the preilluminated leaf recovered completely within 1 to 3 hours under the control conditions. In contrast, the fluorescence responses of the predarkened leaf in high light at 5 degrees C did not recover at all. During a dark/light transient in 2% O(2), 0% CO(2) in low light at 5 degrees C, nonphotochemical fluorescence quenching increased linearly with an increase in the zeaxanthin content in leaves of R. mangle. In soybean (Glycine max) leaves, which contained a background level of zeaxanthin in the dark, a similar treatment with excess light induced a level of nonphotochemical fluorescence quenching that was not paralleled by an increase in the zeaxanthin content.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom