z-logo
open-access-imgOpen Access
Degradation of 2-Carboxyarabinitol 1-Phosphate by a Specific Chloroplast Phosphatase
Author(s) -
Gabriel P. Holbrook,
George Bowes,
Michael E. Salvucci
Publication year - 1989
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.90.2.673
Subject(s) - degradation (telecommunications) , chloroplast , phosphate , phosphatase , chemistry , biochemistry , microbiology and biotechnology , biology , enzyme , computer science , gene , telecommunications
The catalytic degradation of 2-carboxyarabinitol 1-phosphate (CA 1-P), a naturally occurring inhibitor of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), was investigated by chromatographic and spectroscopic analyses of the reaction products. Carboxy-labeled [(14)C]CA 1-P was incubated with a partially purified tobacco (Nicotiana rustica) chloroplast protein that has been shown previously to catalyze metabolism of CA 1-P to a form incapable of inhibiting Rubisco (ME Salvucci, GP Holbrook, JC Anderson, and G Bowes [1988] FEBS Lett 231: 197-201). In the presence and absence of NADPH, ion-exchange chromatography showed a progressive conversion of [2'-(14)C]CA 1-P to a labeled compound which coeluted with authentic carboxyarabinitol. Parallel assays with unlabeled CA 1-P showed a concomitant decrease in the ability of reaction samples to inhibit Rubisco activity. In separate experiments, a 1:1 stoichiometry was found between the release of inorganic phosphate from [2'-(14)C]CA 1-P and accumulation of the (14)C-labeled product. Liberation of inorganic phosphate was not observed when the tobacco enzyme was incubated with ribulose-1,5-bisphosphate, fructose-1,6-bisphosphate, glucose-1-phosphate, glucose-6-phosphate, or 6-phosphogluconate. Proton nuclear magnetic resonance spectroscopy of the labeled CA 1-P reaction product established its identity as carboxyarabinitol. We therefore propose that light-stimulated degradation of CA 1-P is catalyzed in vivo by a specific phosphatase, 2-carboxyarabinitol 1-phosphatase. Carboxyarabinitol 1-phosphatase activity was detected in the absence of NADPH, but increased threefold when 2 millimolar NADPH was present. Thus, while not required for the reaction, NADPH may play an important role in the regulation of CA 1-P degradation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom