z-logo
open-access-imgOpen Access
Tetrazolium Reduction by Guard Cells in Abaxial Epidermis of Vicia faba: Blue Light Stimulation of a Plasmalemma Redox System
Author(s) -
T. Vani,
Agepati S. Raghavendra
Publication year - 1989
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.90.1.59
Subject(s) - guard cell , flavin group , redox , vicia faba , chloroplast , electron transport chain , nadh dehydrogenase , biochemistry , dehydrogenase , nad+ kinase , biology , biophysics , chemistry , enzyme , botany , protein subunit , organic chemistry , gene
The stomata in the abaxial epidermis of Vicia faba were examined for the location of redox systems using tetrazolium salts. Three distinct redox systems could be demonstrated: chloroplast, mitochondrial, and plasmalemma. The chloroplast activity required light and NADP. Mitochondrial activity required added NADH and was suppressed by preincubation with KCN. The plasmalemma redox system in guard cells also required NADH, but was insensitive to KCN and was stimulated by blue light. The involvement of an NADH dehydrogenase in the blue light stimulated redox system in guard cells was suggested by the sensitivity to plantanetin, an inhibitor of NADH dehydrogenase. The redox system of mitochondria was the most active followed by that of plasmalemma. The activity of chloroplasts was the least among the three redox systems. The plasmalemma mediated tetrazolium reduction was stimulated by exogenous flavins and suppressed by Kl or phenylacetate, inhibitors of flavin excitation. We therefore conclude that an NADH-dependent, flavin mediated electron transport system, sensitive to blue light, operates in the plasmalemma of guard cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom