z-logo
open-access-imgOpen Access
NADH Induces the Generation of Superoxide Radicals in Leaf Peroxisomes
Author(s) -
Luis A. del Rı́o,
Vı́ctor M. Fernández,
Francisco López Rupérez,
Luisa M. Sandalio,
José M. Palma
Publication year - 1989
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.89.3.728
Subject(s) - peroxisome , superoxide , xanthine oxidase , biochemistry , microbody , radical , chemistry , xanthine , superoxide dismutase , biology , enzyme , gene
In peroxisomes isolated from pea leaves (Pisum sativum L.) the production of superoxide free radicals (O(2) (-)) by xanthine and NADH was investigated. In peroxisomal membranes, 100 micromolar NADH induced the production of O(2) (-) radicals. In the soluble fractions of peroxisomes, no generation of O(2) (-) radicals was observed by incubation with either NADH or xanthine, although xanthine oxidase was found located predominantly in the matrix of peroxisomes. The failure of xanthine to induce superoxide generation was probably due to the inability to fully suppress the endogenous Mn-superoxide dismutase activity by inhibitors which were inactive against xanthine oxidase. The generation of superoxide radicals in leaf peroxisomes together with the recently described production of these oxygen radicals in glyoxysomes (LM Sandalio, VM Fernández, FL Rupérez, LA del Río [1988] Plant Physiol 87: 1-4) suggests that O(2) (-) generation could be a common metabolic property of peroxisomes and further supports the existence of active oxygen-related rôles for peroxisomes in cellular metabolism.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom