z-logo
open-access-imgOpen Access
Membrane-Associated Polypeptides Induced in Chlamydomonas by Limiting CO2 Concentrations
Author(s) -
Martin H. Spalding,
M Witkin Jeffrey
Publication year - 1989
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.89.1.133
Subject(s) - chlamydomonas reinhardtii , chlamydomonas , photorespiration , limiting , photosynthesis , total inorganic carbon , algae , biophysics , chemistry , membrane , carbon fibers , botany , biochemistry , biology , carbon dioxide , gene , materials science , mechanical engineering , mutant , engineering , organic chemistry , composite number , composite material
Chlamydomonas reinhardtii and other unicellular green algae have a high apparent affinity for CO(2), little O(2) inhibition of photosynthesis, and reduced photorespiration. These characteristics result from operation of a CO(2)-concentrating system. The CO(2)-concentrating system involves active inorganic carbon transport and is under environmental control. Cells grown at limiting CO(2) concentrations have inorganic carbon transport activity, but cells grown at 5% CO(2) do not. Four membrane-associated polypeptides (M(r) 19, 21, 35, and 36 kilodaltons) have been identified which either appear or increase in abundance during adaptation to limiting CO(2) concentrations. The appearance of two of the polypeptides occurs over roughly the same time course as the appearance of the CO(2)-concentrating system activity in response to CO(2) limitation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom