z-logo
open-access-imgOpen Access
Phase Shift of the Circadian Rhythm of Lemna Caused by Pulses of a Leucine Analog, Trifluoroleucine
Author(s) -
Takao Kondo
Publication year - 1988
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.88.3.953
Subject(s) - lemna gibba , circadian rhythm , lemna , phase (matter) , leucine , phase response curve , pulse (music) , valine , biophysics , endogeny , rhythm , chemistry , amino acid , circadian clock , biology , biochemistry , endocrinology , medicine , botany , physics , optics , ecology , aquatic plant , macrophyte , organic chemistry , detector
Pulses of a fluorinated analog of leucine, 5',5',5'-trifluoroleucine, reset the phase of the circadian rhythm of K(+) uptake in Lemna gibba G3 under continuous light conditions. The trifluoroleucine pulse caused the largest delay phase-shifts during the early subjective phase but it caused only small phase advances. The action of trifluoroleucine was investigated and the following results were obtained. (a) The uptake of trifluoroleucine was essentially the same at all circadian phases, even though phase shifting was dramatically different at different phases. At effective phases, the magnitude of phase shifting was well correlated with the amount of trifluoroleucine taken up by the duckweed. (b) The trifluoroleucine pulse lowered the endogenous content of valine and leucine but these decreases did not correlate with phase shifting. (c) Protein synthesis was not affected by trifluoroleucine pulses which caused large phase shifts. (d) Pulses of 4-azaleucine, a different structural analog of leucine, also caused phase shifting. However, neither the direction nor the effective times of phase shifting were similar to those of trifluoroleucine. Taken together, these results negate the proposition that trifluoroleucine and azaleucine caused phase shift by disturbing amino acid metabolism and/or inhibiting protein synthesis, but they suggest instead that these analogs are incorporated into some protein(s) which are necessary for normal clock operation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom