z-logo
open-access-imgOpen Access
Oxygen-18 and Deuterium Labeling Studies of Choline Oxidation by Spinach and Sugar Beet
Author(s) -
Claudia Lerma,
Andrew D. Hanson,
David Rhodes
Publication year - 1988
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.88.3.695
Subject(s) - betaine , choline , spinach , chemistry , choline oxidase , biochemistry , glycine , enzyme , amino acid , acetylcholinesterase
Chenopods synthesize betaine by a two-step oxidation of choline: choline --> betaine aldehyde --> betaine. The pathway is chloroplastic; the first step has been shown in isolated spinach (Spinacia oleracea L.) chloroplasts to be O(2)- and light-dependent, the role of light being to provide reducing power (P Weigel, EA Weretilnyk, AD Hanson 1988 Plant Physiol 86: 54-60). Here, we report use of in vivo(18)O- and (2)H-labeling in conjunction with fast atom bombardment mass spectrometry to test for two hypothetical choline-oxidizing reactions that would explain the observed requirements for O(2) and reductant: a desaturase or an oxygenase. Simple syntheses for (2)H(3)-choline, (2)H(3), (18)O-choline, and (2)H(3), (18)O-betaine are given. A desaturase mechanism was sought by giving choline deuterated at the 2-carbon, or choline unlabeled at this position together with (2)H(2)O and by analyzing newly synthesized betaine. About 15% of the (2)H at C-2 was lost during oxidation of choline to betaine, and about 10% of the betaine made in the presence of 50% (2)H(2)O was monodeuterated. These small effects are more consistent with chemical exchange than with a desaturase, because 10 to 15% losses of (2)H from the C-2 position also occurred if choline was converted to betaine by a purified bacterial choline oxidase. To test for an oxygenase, the incorporation of (18)O from (18)O(2) into newly synthesized betaine was compared with that from (18)O-labeled choline, in light and darkness. Incorporation of (18)O from (18)O-choline was readily detectable and varied from about 15 to 50% of the theoretical maximum value; the (18)O losses were attributable to exchange of the intermediate betaine aldehyde with water. In darkness, incorporation of (18)O from (18)O(2) approached that from (18)O-choline, but in the light was severalfold lower, presumably due to isotopic dilution by photosynthetic (16)O(2). These data indicate that the chloroplast choline-oxidizing enzyme is an oxygenase.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom