Cercospora beticola Toxin Inhibits Vanadate-Sensitive H+ Transport in Corn Root Membrane Vesicles
Author(s) -
J.P. Blein,
I. Bourdil,
M Rossignol,
R. Scalla
Publication year - 1988
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.88.2.429
Subject(s) - vanadate , oligomycin , atpase , toxin , vesicle , biochemistry , quenching (fluorescence) , chemistry , proton transport , membrane , enzyme , fluorescence , physics , quantum mechanics
The effect of Cercospora beticola toxin on the transport of protons by vanadate-sensitive ATPase was studied with corn (Zea mays) root microsomal vesicles prepared by differential centrifugation, sedimentation through a sucrose cushion, and washing with Triton X-100 plus KBr. In these preparations, addition of ATP induced intravesicular H(+)-accumulation as evidenced by a rapid quenching of the fluorescence of 9-amino-6-chloro-2-methoxy acridine. This quenching was relatively unaffected by inhibitors of mitochondrial and tonoplast-type ATPases, but was strongly reduced by inhibitors of plasma membrane H(+)-ATPase. C. beticola toxin markedly inhibited ATP dependent H(+)-transport, and this effect increased with the length of preincubation with the toxin. The same observations were made concerning ATPase activity. Inhibition of H(+)-transport was greater at pH 7.3 than at pH 5.7. Lineweaver-Burk plot analysis showed that inhibition kinetics were competitive with respect to ATP. These data suggest a direct effect of C. beticola toxin on vanadate-sensitive ATPase presumed to be associated with the plasma membrane.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom