z-logo
open-access-imgOpen Access
Growth of the Maize Primary Root at Low Water Potentials
Author(s) -
Robert E. Sharp,
Wendy Kuhn Silk,
Theodore C. Hsiao
Publication year - 1988
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.87.1.50
Subject(s) - elongation , apex (geometry) , vermiculite , shoot , biology , zea mays , horticulture , water stress , growth rate , botany , agronomy , materials science , mathematics , geometry , ultimate tensile strength , metallurgy
Seedlings of maize (Zea mays L. cv WF9 x Mo 17) were grown in vermiculite at various water potentials. The primary root continued slow rates of elongation at water potentials which completely inhibited shoot growth. To gain an increased understanding of the root growth response, we examined the spatial distribution of growth at various water potentials. Time lapse photography of the growth of marked roots revealed that inhibition of root elongation at low water potentials was not explained by a proportional decrease in growth along the length of the growing zone. Instead, longitudinal growth was insensitive to water potentials as low as - 1.6 megapascal close to the root apex, but was inhibited increasingly in more basal locations such that the length of the growing zone decreased progressively as the water potential decreased. Cessation of longitudinal growth occurred in tissue of approximately the same age regardless of spatial location or water status, however. Roots growing at low water potentials were also thinner, and analysis revealed that radial growth rates were decreased throughout the elongation zone, resulting in greatly decreased rates of volume expansion.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom