z-logo
open-access-imgOpen Access
Herbicide Resistance in Datura innoxia
Author(s) -
Praveen K. Saxena,
John King
Publication year - 1988
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.86.3.863
Subject(s) - acetolactate synthase , sulfonylurea , cross resistance , biology , methane sulfonate , cell culture , ploidy , callus , biochemistry , microbiology and biotechnology , enzyme , botany , gene , genetics , insulin , mutant
Cells resistant to the sulfonylurea herbicides chlorsulfuron and sulfometuron methyl were isolated from a predominantly haploid cell suspension culture of Datura innoxia P. Mill. Exponentially growing cell colonies (aggregates of about 40 cells) were mutagenized with ethyl methane sulfonate, subcultured for 10 days to allow growth recovery and plated on a medium containing either chlorsulfuron or sulfometuron methyl at a concentration (10(-8) molar) which killed wild type cells. Surviving clones were picked up after 3 to 4 weeks, further proliferated as callus or cell suspension cultures, and tested for their resistance to both the sulfonylureas and imidazolinones, a chemically different class of herbicides. The variants were stable and showed high (100- to 1000-fold) resistance to the sulfonylureas. While some also exhibited cross resistance to imidazolinones, others showed no cross-resistance at all or, as in one case, greater sensitivity than wild type cells to the imidazolinones. Both classes of herbicides tested inhibited acetolactate synthase activity isolated from wild type cells. The acetolactate synthase of the resistant variants, however, was found to be resistant to the sulfonylureas and also to the imidazolinone(s) in those cells showing cross-resistance to the latter. The lack of cross-resistance observed in some cases provides evidence that the two groups of herbicides have slightly different sites on the acetolactate synthase molecule.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom