Stromal Free Calcium Concentration and Light-Mediated Activation of Chloroplast Fructose-1,6-Bisphosphatase
Author(s) -
Georg Kreimer,
Michael Melkonian,
Joseph A. M. Holtum,
Erwin Latzko
Publication year - 1988
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.86.2.423
Subject(s) - fructose 1,6 bisphosphatase , chloroplast , calcium , chemistry , fructose , biochemistry , botany , biophysics , microbiology and biotechnology , biology , organic chemistry , gene
Light-mediated activation of fructose-1,6-bisphosphatase (EC 3.1.3.11) in intact spinach chloroplasts (Spinacia oleracea L.) is enhanced in the presence of 10(-5) molar external free Ca(2+). The most pronounced effect is observed during the first minutes of illumination. Ruthenium red, an inhibitor of light-induced Ca(2+) influx, inhibits this Ca(2+) stimulated activation. In isolated stromal preparations, the activation of fructose-1,6-bisphosphatase is already enhanced by 2 minutes of exposure to elevated Ca(2+) concentrations in the presence of physiological concentrations of Mg(2+) and fructose-1,6-bisphosphate. Maximal activation of the enzyme is achieved between 0.34 and 0.51 millimolar Ca(2+). The Ca(2+) mediated activation decreases with increasing fructose-1,6-bisphosphate concentration and with increasing pH. The data are consistent with the proposal that the illumination of chloroplasts leads to a transient increase of free stromal Ca(2+). In dark-kept chloroplasts the steady-state concentration of free stromal Ca(2+) is 2.4 to 6.3 micromolar as determined by null point titration. These observations support our previous proposal that light-induced Ca(2+) influx into chloroplasts does not only influence the cytosolic concentration of free Ca(2+) but also regulates enzymatic processes inside the chloroplast.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom