z-logo
open-access-imgOpen Access
Plant Plasma Membrane Proteins
Author(s) -
Howard D. Grimes,
R. W. Breidenbach
Publication year - 1987
Publication title -
plant physiology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.85.4.1048
Subject(s) - antiserum , kilodalton , isoelectric point , membrane , protoplast , biology , polyacrylamide gel electrophoresis , membrane protein , isoelectric focusing , blot , polyacrylamide , biochemistry , microbiology and biotechnology , antibody , enzyme , gene , immunology
A major 75 kD protein group from the tomato plasma membrane was semipurified on polyacrylamide gels and used to raise a rabbit antiserum. The resulting antiserum recognized a single 75 kilodalton band from phase partitioned tomato plasma membrane (from both suspension cells and mature, green fruit) after resolution on one-dimensional polyacrylamide gels. Two-dimensional polyacrylamide gel analysis of proteins from tomato plasma membrane showed that the 75 kilodalton antiserum recognized a group of proteins ranging from 63.1 to 88.2 kilodaltons (mean = 75.6 kilodaltons) and with isoelectric point values ranging from 5.7 to 6.3. No other spots were visible on the two-dimensional blots. This antiserum was shown to bind protoplast surface epitopes by indirect immunofluorescence. The presence of this protein group in both monocotyledonous and dicotyledonous plants was established by immunoblotting the tomato 75 kilodalton antiserum against proteins obtained from plasma membrane-enriched fractions from corn roots and soybean roots. The data suggest that this 75 kilodalton protein group is a major proteinaceous component of the plant plasma membrane.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom