z-logo
open-access-imgOpen Access
Regulation of Photosynthetic Carbon Metabolism in Cucumber by Light Intensity and Photosynthetic Period
Author(s) -
N. Suzanne Robbins,
David M. Pharr
Publication year - 1987
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.85.2.592
Subject(s) - sucrose phosphate synthase , photosynthesis , sucrose , stachyose , starch , raffinose , cucumis , photoperiodism , sucrose synthase , botany , sugar , biology , chemistry , horticulture , biochemistry , invertase
The effects of photosynthetic periods and light intensity on cucumber (Cucumis sativus L.) carbon exchange rates and photoassimilate partitioning were determined in relation to the activities of galactinol synthase and sucrose-phosphate synthase. Carbon assimilation and partitioning appeared to be controlled by different mechanisms. Carbon exchange rates were influenced by total photon flux density, but were nearly constant over the entire photoperiod for given photoperiod lengths. Length of the photosynthetic periods did influence photoassimilate partitioning. Assimilate export rate was decreased by more than 60% during the latter part of the short photoperiod treatment. This decrease in export rate was associated with a sharp increase in leaf starch acccumulation rate. Results were consistent with the hypothesis that starch accumulation occurs at the expense of export under short photoperiods. Galactinol synthase activities did not appear to influence the partitioning of photoassimilates between starch and transport carbohydrates. Sucrose phosphate synthase activities correlated highly with sugar formation rates (sucrose, raffinose, stachyose + assimilate export rate, r = 0.93, alpha = 0.007). Cucumber leaf sucrose phosphate synthase fluctuated diurnally in a similar pattern to that observed in vegetative soybean plants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom