z-logo
open-access-imgOpen Access
Nitric Oxide Emissions from Soybean Leaves during in Vivo Nitrate Reductase Assays
Author(s) -
Lowell Klepper
Publication year - 1987
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.85.1.96
Subject(s) - oxime , acetaldehyde , chemistry , in vivo , nitrate reductase , nitric oxide , nitrite , biochemistry , nitrate , glycine , nuclear chemistry , organic chemistry , food science , ethanol , biology , microbiology and biotechnology , amino acid
Recent work identified acetaldehyde oxime as the predominant product purged by inert gases from anaerobic in vivo nitrate reductase (NR) assays of soybean (Glycine max [L.] Merr.) leaves. Another recent study supported earlier research findings which identified the primary product evolved from soybean leaves as nitric oxide (NO). This paper provides evidence that eliminates acetaldehyde oxime and confirms that NO is the primary nitrogenous product purged from the in vivo NR assay system. A portion of the evidence is based on the high water solubility of acetaldehyde oxime. Other evidence presented is the failure by chemical and spectrophotometric means to detect oximes in gases emitted in the purging of the reaction medium or in the leaf tissues. The gaseous product from the in vivo NR assay system reacted identically to NO standards and did not resemble acetaldehyde oxime standards. It was concluded that the predominant N product within the leaves was nitrite and that the predominant gaseous N product evolved from the assay was NO.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom