Some Kinetic and Regulatory Properties of the Pea Mitochondrial Pyruvate Dehydrogenase Complex
Author(s) -
Ján A. Miernyk,
Douglas D. Randall
Publication year - 1987
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.83.2.306
Subject(s) - pyruvate dehydrogenase complex , pyruvate decarboxylation , biochemistry , oxoglutarate dehydrogenase complex , l lactate dehydrogenase , pyruvate dehydrogenase phosphatase , chemistry , lactate dehydrogenase , enzyme
The pyruvate dehydrogenase complex was isolated, partially purified, and characterized from green pea (Pisum sativum L., cv Little Marvel) leaf mitochondria. The pH optimum for the overall reaction was 7.6. The divalent cation requirement was best satisfied by Mg(2+). Reaction velocity was maximal at 40 degrees C. Pyruvate was a better substrate than 2-oxo-butyrate; other 2-oxo-acids were not substrates. Michaelis constants for substrates were; pyruvate, 57 micromolar; NAD, 122 micromolar; Coenzyme-A, 5 micromolar; Mg(2+), 0.36 millimolar; Mg-thiamine pyrophosphate, 80 nanomolar. The products, NADH and acetyl-Coenzyme-A, were linear competitive inhibitors with respect to NAD and Coenzyme A. Inhibition constants were 18 and 10 micromolar, respectively. Glyoxylate inhibited complex activity only in the absence of thiol reagents. Glyoxylate inhibition was competitive with respect to pyruvate with an inhibition constant of 51 micromolar. Among mitochondrial metabolites examined as potential effectors, only ADP with an inhibition constant of 0.57 millimolar could be of physiological significance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom