z-logo
open-access-imgOpen Access
Cytokinin-Induced Ethylene Biosynthesis in Nonsenescing Cotton Leaves
Author(s) -
Jeffrey C. Suttle
Publication year - 1986
Publication title -
plant physiology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.82.4.930
Subject(s) - ethylene , kinetin , cytokinin , zeatin , thidiazuron , methionine , chemistry , malvaceae , 1 aminocyclopropane 1 carboxylic acid , biosynthesis , horticulture , botany , biology , biochemistry , amino acid , explant culture , auxin , enzyme , micropropagation , in vitro , catalysis , gene
The influence of cytokinins on ethylene production was examined using cotton leaf tissues. Treatment of intact cotton (Gossypium hirsutum L. cv LG 102) seedlings with both natural and synthetic cytokinins resulted in an increase in ethylene production by excised leaves. The effectiveness of the cytokinins tested was as follows: thidiazuron >> BA >> isopentyladenine >/= zeatin >> kinetin. Using 100 micromolar thidiazuron (TDZ), an initial increase in ethylene production was observed 7 to 8 hours post-treatment, reached a maximum by 24 hours and then declined. Inhibitors of 1-aminocyclopropane-1-carboxylic acid (ACC) synthesis and its oxidation to ethylene reduced ethylene production 24 hours post-treatment; however, by 48 hours only inhibitors of ACC oxidation were effective. The increase in ethylene production was accompanied by a massive accumulation of ACC and its acid-labile conjugate. TDZ treatment resulted in a significant increase in the capacity of tissues to oxidize ACC to ethylene. Endogenous levels of methionine remained constant following TDZ treatment. It was concluded that the stimulation of ethylene production in cotton leaves following cytokinin treatment was the result of an increase in both the formation and oxidation of ACC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom