z-logo
open-access-imgOpen Access
Regulation of Plasma Membrane β-Glucan Synthase from Red Beet Root by Phospholipids
Author(s) -
Bruce P. Wasserman,
Kevin McCarthy
Publication year - 1986
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.82.2.396
Subject(s) - digitonin , phospholipid , glucan , biochemistry , chemistry , membrane , microsome , atp synthase , specific activity , enzyme , chromatography
Extraction of red beet root plasma membranes with the detergent Triton X-100 at a level of 2.0% (weight/volume) resulted in the depletion of over 90% of total membrane phospholipid and the reduction of glucan synthase activity by 80 to 90%. Reconstitution of the delipidated Triton X-100, 100,000g fraction in the presence of phospholipids restored glucan synthase activity. The most effective phospholipid was phosphatidyl-ethanolamine, which restored 110 to 144% of the original activity at 0.5% (weight/volume). Glucan synthase in the phospholipid-reactivated Triton X-100-treated fraction was enriched 9-fold in specific activity relative to microsomal membranes but was unstable in digitonin. These results support the hypothesis that glucan synthase activity is regulated by its phospholipid environment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here