Developmental Changes in Photosynthetic Gas Exchange in the Polyol-Synthesizing Species, Apium graveolens L. (Celery)
Author(s) -
Theodore C. Fox,
Robert Kennedy,
Wayne H. Loescher
Publication year - 1986
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.82.1.307
Subject(s) - apium graveolens , photosynthesis , botany , mannitol , greenhouse , horticulture , chemistry , biology , organic chemistry
Developmental changes in photosynthetic gas exchange were investigated in the mannitol synthesizing plant celery (Apium graveolens L. ;Giant Pascal'). Greenhouse-grown plants had unusually high photosynthetic rates for a C(3) plant, but consistent with field productivity data reported elsewhere for this plant. In most respects, celery exhibited typical C(3) photosynthetic characteristics; light saturation occurred at 600 micromoles photons per square meter per second, with a broad temperature optimum, peaking at 26 degrees C. At 2% O(2), photosynthesis was enhanced 15 to 25% compared to rates at 21% O(2). However, celery had low CO(2) compensation points, averaging 7 to 20 microliters per liter throughout the canopy. Conventional mechanisms for concentrating CO(2) were not detectable.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom