Studies on the Photoactivation of the Water-Oxidizing Enzyme
Author(s) -
Franklin E. Callahan,
David W. Becker,
George M. Cheniae
Publication year - 1986
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.82.1.261
Subject(s) - photoinhibition , photosystem ii , thylakoid , oxidizing agent , photochemistry , chloroplast , biophysics , chemistry , biology , kinetics , enzyme , photosynthesis , biochemistry , organic chemistry , physics , quantum mechanics , gene
Inactivation of the water splitting enzyme complex in leaves or isolated chloroplasts results in increased susceptibility of photosystem II (PSII) to damage by light. Photoinhibition under this condition occurs in very weak light. The site of damage is exclusive of the water splitting complex yet still on the oxidizing side of PSII, as the Q(B) locus is unaffected while photoreduction of silicomolybdate is inhibited. The kinetics of loss in PSII activity are more complex than apparent first-order, and the quantum efficiency is low. We observe no evidence of deletion from thylakoid membranes of any PSII polypeptide as a consequence of photoinhibition, although recovery from the photoinhibition is dependent upon both light and 70S protein synthesis. Enhanced synthesis of two proteins occurs during recovery, only one of which (D2) appears to be causally related to the recovery. We present a model which describes the relationship of weak light photoinhibition and its recovery to photoactivation of the S-state water oxidizing complex.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom