z-logo
open-access-imgOpen Access
A Possible Second Role for Calmodulin in Biological Clock-Controlled Processes of Euglena
Author(s) -
Thomas A. Lonergan
Publication year - 1986
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.82.1.226
Subject(s) - euglena gracilis , euglena , circadian rhythm , biology , photosynthesis , circadian clock , calmodulin , rhythm , darkness , microbiology and biotechnology , botany , biophysics , biochemistry , neuroscience , medicine , chloroplast , gene , enzyme
The response of the Euglena gracilis (Klebs strain Z) photosynthesis circadian rhythm to three calmodulin antagonists was examined. In the presence of an antagonist, the photosynthetic reactions were uncoupled from the biological clock. Instead of the highly predictable rhythmic pattern characteristic of a biological clock-controlled circadian rhythm, the photosynthetic rate appears to be influenced by the light/dark cycle. The rate of O(2) evolution increases throughout the light portion of the cycle and does not decrease until the cells are exposed to darkness. Shortterm exposure to a calmodulin antagonist (2 hour pulses) failed to cause phase shifts in the timing of the rhythm. This suggests that calmodulin is not part of the clock controlling photosynthesis and that it has a clock-related role different from that reported for the cell division rhythm in Euglena.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom