z-logo
open-access-imgOpen Access
Uptake and Processing of the Precursor to the Small Subunit of Ribulose 1,5-Bisphosphate Carboxylase by Leucoplasts from the Endosperm of Developing Castor Oil Seeds
Author(s) -
Sheila A. Boyle,
Sean M. Hemmingsen,
David T. Dennis
Publication year - 1986
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.81.3.817
Subject(s) - endosperm , chloroplast , pyruvate carboxylase , percoll , protein subunit , biochemistry , rubisco , ribulose 1,5 bisphosphate , biology , photosynthesis , ribulose , centrifugation , gene , enzyme
Intact leucoplasts from the endosperm of developing castor oil seed were isolated by Percoll density gradient centrifugation. The precursor to the small subunit of ribulose 1,5-bisphosphate carboxylase from pea was synthesized in vitro from hybrid-selected mRNA. Leucoplasts imported this precursor by an ATP-requiring mechanism similar to that described in chloroplasts (AR Grossman et al. 1980 Nature 285: 625-628). The small subunit precursor was processed to a molecular weight that was identical with that of the mature pea small subunit. These results show that leucoplasts, though specialized for fatty acid biosynthesis and not photosynthesis, have a mechanism of protein import similar to that of chloroplasts.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom