Microspectrofluorometric Measurement of Chloroplast DNA in Dividing and Expanding Leaf Cells of Spinacia oleracea
Author(s) -
Margaret E. Lawrence,
J. V. Possingham
Publication year - 1986
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.81.2.708
Subject(s) - chloroplast , spinacia , biology , plastid , dna , chloroplast dna , spinach , population , nuclear dna , botany , microbiology and biotechnology , biochemistry , mitochondrial dna , gene , demography , sociology
Absolute DNA amounts of individual chloroplasts from mesophyll and epidermal cells of developing spinach leaves were measured by microspectrofluorometry using the DNA-specific stain, 4,6-diamidino-2-phenyl indole, and the bacterium, Pediococcus damnosus, as an internal standard. Values obtained by this method showed that DNA amounts of individual chloroplasts from mesophyll cells fell within a normal distribution curve, although mean DNA amounts changed during leaf development and also differed from the levels in epidermal chloroplasts. There was no evidence in the data of plastids containing either the high or low levels of DNA which would be indicative of discontinuous polyploidy of plastids, or of division occurring in only a small subpopulation of chloroplasts. By contrast, the distribution of nuclear DNA amounts in the same leaf tissues in which cell division was known to be occurring showed a clear bimodal distribution. We consider that the distribution of chloroplast DNA in the plastid population shows that there is no S-phase of chloroplast DNA synthesis, all chloroplasts in the population in young leaf cells synthesize DNA, and all chloroplasts divide.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom