ADPglucose Pyrophosphorylase Is Encoded by Different mRNA Transcripts in Leaf and Endosperm of Cereals
Author(s) -
Hari B. Krishnan,
Christopher D. Reeves,
Thomas W. Okita
Publication year - 1986
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.81.2.642
Subject(s) - endosperm , messenger rna , biology , complementary dna , blot , biochemistry , rna , microbiology and biotechnology , northern blot , polysome , gene , ribosome
Western blots of soluble protein from wheat, rice, and corn showed that ADPglucose pyrophosphorylase subunits have a size of 50 kilodaltons from endosperm tissue and 43 and 46 kilodaltons from leaf. Antisera to ADPglucose pyrophosphorylase precipitated in vitro translation products of 73 and 76 kilodaltons when leaf poly(A)(+) RNA was used, whereas endosperm mRNA directed the synthesis of 50 and 56 kilodalton polypeptides. To further study the nature of these mRNA species, an ADPglucose pyrophosphorylase cDNA clone from rice endosperm polyadenylated RNA was obtained and used as a hybridization probe. Northern blots showed that ADPglucose pyrophosphorylase mRNA was slightly larger in leaf (2100 bases) than in endosperm tissue (1900 bases). These studies indicated that in cereals there are at least two tissue specific forms of ADPglucose pyrophosphorylase that are encoded by distinct mRNA transcripts. Analysis of genomic DNA by Southern blotting suggested that ADPglucose pyrophosphorylase is encoded by a small gene family.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom