Serine Hydroxymethyltransferase from Soybean Root Nodules
Author(s) -
Michelle K. Mitchell,
Paul H. S. Reynolds,
Dale G. Blevins
Publication year - 1986
Publication title -
plant physiology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.81.2.553
Subject(s) - serine hydroxymethyltransferase , serine , glycine , product inhibition , enzyme , stereochemistry , biochemistry , chemistry , molar concentration , amino acid , non competitive inhibition , biology , organic chemistry
Serine hydroxymethyltransferase has been purified 1,550-fold from the plant fraction of soybean (Glycine max [L]. Merr. cv Williams) nodules. The pH optimum for the enzyme was at 8.5. The native molecular weight was 230,000 with a subunit molecular weight of 55,000 which suggested a tetramer of identical subunits. The enzyme kinetics for the enzyme were Michaelis-Menten; there was no evidence for cooperativity in the binding of either substrates or product inhibitors. There were two K(m) values for serine at 1.5 and 40 millimolar. The K(m) for l-tetrahydrofolate was 0.25 millimolar. l-Methyl-, l-methenyl-, and l-methylene-tetrahydrofolates were all noncompetitive inhibitors with l-tetrahydrofolate with K(i) values of 1.8, 3.0, and 2.9 millimolar, respectively. Glycine was a competitive inhibitor with serine with a K(i) value of 3.0 millimolar. The intersecting nature of the double reciprocal plots together with the product inhibition data suggested an ordered mechanism with serine the first substrate to bind and glycine the last product released. The enzyme was insensitive to a wide range of metabolites which have previously been reported to affect its activity. These results are discussed with respect to the roles of serine hydroxymethyltransferase and the one-carbon metabolite pool in control of the carbon flow to the purine biosynthetic pathway in ureide biogenesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom