z-logo
open-access-imgOpen Access
Specific Polysome Immunoadsorption to Purify an Ammonium-Inducible Glutamate Dehydrogenase mRNA from Chlorella sorokiniana and Synthesis of Full Length Double-Stranded cDNA from the Purified mRNA
Author(s) -
Newell F. Bascomb,
Katherine J. Turner,
Robert R. Schmidt
Publication year - 1986
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.81.2.527
Subject(s) - immunoadsorption , chlorella sorokiniana , polysome , messenger rna , complementary dna , biochemistry , glutamate dehydrogenase , biology , chlorella , microbiology and biotechnology , chemistry , rna , glutamate receptor , gene , algae , botany , genetics , ribosome , receptor , antibody
A specific polysome immunoadsorption procedure, employing soluble rabbit anti-NADP-GDH IgG and sheep anti-rabbit IgG covalently-linked to an insoluble cellulose matrix, was used to immunoselect polysomes translating mRNA for a chloroplastic ammonium-inducible NADP-GDH in fully induced cells of Chlorella sorokiniana. The immunoselected polysomes were dissociated, and the NADP-GDH mRNA was recovered by oligo (dT)cellulose chromatography. The translatable NADP-GDH mRNA was estimated to be 0.07 and 90% of the total polysomal poly(A)(+)RNA before and after immunoselection of the polysomes, respectively. The immunoadsorption procedure resulted in an 83% recovery and 1,291-fold purification of translatable NADP-GDH mRNA. In vitro translation of the immunoselected poly(A)(+)RNA yielded a single radioactive protein (on sodium dodecyl sufate polyacrylamide gels) with a molecular weight of 58,500, i.e. size of the putative precursor-protein of the NADP-GDH subunit in the holoenzyme in fully induced cells. The purified NADP-GDH mRNA was used for synthesis of a high proportion of nearly full-length single-stranded cDNA and double-stranded cDNA molecules.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom