z-logo
open-access-imgOpen Access
Effects of Environmental Stresses on the Cell Cycle of Two Marine Phytoplankton Species
Author(s) -
Robert Olson,
Daniel Vaulot,
Sallie W. Chisholm
Publication year - 1986
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.80.4.918
Subject(s) - thalassiosira weissflogii , cell cycle , biology , cell , rna , phytoplankton , flow cytometry , diatom , cell growth , cell division , nitrogen , biophysics , cell size , microbiology and biotechnology , botany , biochemistry , chemistry , ecology , organic chemistry , nutrient , gene
Cell cycle phase durations of cultures of Hymenomonas carterae Braarud and Fagerl, a coccolithophore, and Thalassiosira weissflogii Grun., a centric diatom, in temperature-, light- or nitrogen-limited balanced growth were determined using flow cytometry. Suboptimal temperature caused increases in the duration of all phases of the cell cycle (though not equally) in both species, and the increased generation time of nitrogen-limited cells of both species was due almost wholly to expansion of G(1) phase. In H. carterae light limitation caused only G(1) phase to expand, but in T. weissflogii both G(2) + M and G(1) were affected. These results are discussed in relation to cell division phasing patterns of these two species and to models of phytoplankton growth. Simultaneous measurements of protein and DNA on individual cells indicated that under all conditions, the protein content of cells in G(1) was a constant proportion of that of G(2) + M cells. Simultaneous measurements of RNA and protein on each cell indicated that the amounts of these two cell constituents were always tightly correlated. Under conditions of nitrogen limitation both protein and RNA per cell decreased to less than one-third of the levels found in nonlimited cells. This indicates, at least for nitrogen-replete cells, that neither protein nor RNA levels are likely to act as the trigger for cell cycle progression. Strict control by cell size is also unlikely since mean cell volume decreased as growth rates were limited by light and nitrogen supply, but increased with decreasing temperature.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom