Purification and Properties of the Plasma Membrane H+-Translocating Adenosine Triphosphatase of Phaseolus mungo L. Roots
Author(s) -
Kunihiro Kasamo
Publication year - 1986
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.80.4.818
Subject(s) - atpase , glycerol , chromatography , membrane , phaseolus , centrifugation , sodium , gel electrophoresis , chemistry , sodium dodecyl sulfate , biochemistry , polyacrylamide gel electrophoresis , enzyme , biology , botany , organic chemistry
The plasma membrane ATPase of mung bean (Phaseolus mungo L.) roots has been solubilized with a two-step procedure using the anionic detergent, deoxycholate (DOC) and the zwitterionic detergent, zwittergent 3-14 as follows: (a) loosely bound membrane proteins are removed by treatment with 0.1% DOC; (b) The ATPase is solubilized with 0.1% zwittergent in the presence of 1% DOC; (c) the solubilized material is further purified by centrifugation through a glycerol gradient (45-70%). Typically, about 10% of the ATPase activity is recovered, and the specific activity increases about 11-fold. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that the peak fraction from the glycerol gradient contains three major polypeptides of M(r) = 105,000, 67,000, and 57,000 daltons. The properties of the purified ATPase are essentially the same as those of membrane-bound ATPase, with respect to pH optimum, substrate specificity, inhibitor sensitivity, and ion stimulation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom