z-logo
open-access-imgOpen Access
Hormonal Regulation of the Development of Protease and Carboxypeptidase Activities in Barley Aleurone Layers
Author(s) -
Rachel Wilson Hammerton,
TuanHua David Ho
Publication year - 1986
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.80.3.692
Subject(s) - aleurone , proteases , carboxypeptidase , protease , biochemistry , hordeum vulgare , endosperm , aminopeptidase , biology , leupeptin , chemistry , enzyme , amino acid , botany , leucine , poaceae
Carboxypeptidase and protease activities of hormone-treated barley (Hordeum vulgare cv Himalaya) aleurone layers were investigated using the substrates N-carbobenzoxy-Ala-Phe and hemoglobin. A differential effect of gibberellic acid (GA(3)) on these activities was observed. The carboxypeptidase activity develops in the aleurone layers during imbibition without the addition of hormone, while the release of this enzyme to the incubation medium is enhanced by GA(3). In contrast, GA(3) is required for both the production of protease activity in the aleurone layer and its secretion. The time course for development of protease activity in response to GA(3) is similar to that observed for alpha-amylase. Treating aleurone layers with both GA(3) and abscisic acid prevents all the GA(3) effects described above. Carboxypeptidase activity is maximal between pH 5 and 6, and is inhibited by diisopropylfluorophosphate and p-hydroxymercuribenzoate. We have observed three protease activities against hemoglobin which differ in charge but are all 37 kilodaltons in size on sodium dodecyl sulfate polyacrylamide gels. The activity of the proteases can be inhibited by sulfhydryl protease inhibitors, such as bromate and leupeptin, yet is enhanced by 2-fold with 2-mercaptoethanol. In addition, these enzymes appear to be active against the wheat and barley storage proteins, gliadin and hordein, respectively. On the basis of these characteristics and the time course of GA(3) response, it is concluded that the proteases represent the GA(3)-induced, de novo synthesized proteases that are mainly responsible for the degradation of endosperm storage proteins.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom