Light and CO2 Response of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Activation in Arabidopsis Leaves
Author(s) -
Michael E. Salvucci,
Archie R. Portis,
William L. Ogren
Publication year - 1986
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.80.3.655
Subject(s) - ribulose 1,5 bisphosphate , oxygenase , arabidopsis , rubisco , pyruvate carboxylase , chemistry , botany , photosynthesis , biology , biochemistry , enzyme , gene , mutant
The requirements for activation of ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) were investigated in leaves of Arabidopsis wild-type and a mutant incapable of light activating rubisco in vivo. Upon illumination with saturating light intensities, the activation state of rubisco increased 2-fold in the wild-type and decreased in the mutant. Activation of fructose 1,6-bisphosphate phosphatase was unaffected by the mutation. Under low light, rubisco deactivated in both the wild-type and the mutant. Deactivation of rubisco in the mutant under high and low light led to the accumulation of high concentrations of ribulose 1,5-bisphosphate. Inhibiting photosynthesis with methyl viologen prevented ribulose 1,5-bisphosphate accumulation but was ineffective in restoring rubisco activation to the mutant. Net photosynthesis and the rubisco activation level were closely correlated and saturated at a lower light intensity in the mutant than in wild-type. At CO(2) concentrations between 100 and 2000 microliters per liter, the activation state was a function of the CO(2) concentration in the dark but was independent of CO(2) concentration in the light. High CO(2) concentration (1%) suppressed activation in the wild-type and deactivation in the mutant. These results support the concept that rubisco activation in vivo is not a spontaneous process but is catalyzed by a specific protein. The absence of this protein, rubisco activase, is responsible for the altered characteristics of rubisco activation in the mutant.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom