z-logo
open-access-imgOpen Access
Reciprocal Antagonism between the Herbicides, Diclofop-Methyl and 2,4-D, in Corn and Soybean Tissue Culture
Author(s) -
Richard H. Shimabukuro,
Wendy C. Walsh,
Roland A. Hoerauf
Publication year - 1986
Publication title -
plant physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.554
H-Index - 312
eISSN - 1532-2548
pISSN - 0032-0889
DOI - 10.1104/pp.80.3.612
Subject(s) - antagonism , reciprocal , biology , tissue culture , chemistry , agronomy , stereochemistry , genetics , in vitro , philosophy , linguistics , receptor
The antagonistic interaction between the grass herbicide, diclofopmethyl (methyl 2-[4(2',4'-dichlorophenoxy)phenoxy]propanoate) (DM), and 2,4-dichlorophenoxyacetic acid (2,4-D), was demonstrated in DM-resistant soybean (Glycine max [L.] Merr.) and DM-susceptible corn (Zea mays L.). 2,4-D caused root shortening and thickening, and induced callus growth in soybean and corn root tissue cultures at 1 and 10 micromolar. Normal soybean root growth was unaffected by 10 micromolar DM whereas corn root growth was inhibited completely by 1 to 10 micromolar DM. DM at 10 micromolar reversed completely the induction of callus growth by 1 micromolar 2,4-D in soybean roots. In corn, 10 micromolar 2,4-D reversed the growth inhibiting activity of 1 micromolar DM and induced callus growth. The antagonistic interaction between DM and 2,4-D was reciprocal and the activity of either compound depended upon the relative concentration of the other. 2,4-D did not antagonize or decrease the activity of DM by decreasing its uptake by root tissues or increasing the rate of its detoxication. The antagonistic interaction between DM and 2,4-D probably involves involves cellular activity associated with actively growing and proliferating cells and requires the presence of both compounds at the sensitive site.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom